R/mmexpand_network.R
mmexpand_network.Rd
Searches for all connections between the given set of scaffolds
and the scaffolds in mm
. The given set of scaffolds
is often a subset of mm
, but can also be a manually selected set of scaffolds from which to find connections in mm
.
mmexpand_network( mm, scaffolds, network, min_connections = 2, include_connections = "direct" )
mm | (required) A dataframe loaded with |
---|---|
scaffolds | (required) The scaffolds from which to find connections in |
network | (required) Paired-end or mate-pair connections between scaffolds in long format. The first and second columns must contain all connected scaffold pairs and the third column the number of connections. |
min_connections | Filter all scaffold pairs with equal to or less than this number of connections before the extraction. (Default: |
include_connections | The connections to include. One of the following:
|
A dataframe (tibble) compatible with other mmgenome2 functions.
Kasper Skytte Andersen ksa@bio.aau.dk
Soren M. Karst smk@bio.aau.dk
Mads Albertsen MadsAlbertsen85@gmail.com
#> # A tibble: 97,285 x 13 #> scaffold length gc cov_C13.11.14 cov_C13.11.25 cov_C13.12.03 cov_C14.01.09 #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 1 8264 57.8 1.44 53.6 0 0.066 #> 2 2 1027 57.0 0.625 24.2 0 0 #> 3 3 1665 55.9 13.5 434. 0.166 0.177 #> 4 4 9056 35.9 0.01 23.4 0 0 #> 5 5 3343 64.0 3.20 16.4 0 0 #> 6 6 98207 39.1 0.00966 24.5 3.29 9.85 #> 7 7 6480 63.0 2.61 19.2 1.46 12.3 #> 8 8 15790 61.7 2.78 21.2 1.62 10.3 #> 9 9 1403 70.4 85.1 192. 0 0 #> 10 10 2018 70.2 50.3 101. 0 0 #> # … with 97,275 more rows, and 6 more variables: PC1 <dbl>, PC2 <dbl>, #> # PC3 <dbl>, geneID <chr>, taxonomy <fct>, rRNA16S <fct>selection <- data.frame( cov_C13.11.25 = c(7.2, 16.2, 25.2, 23.3, 10.1), cov_C14.01.09 = c(47, 77, 52.8, 29.5, 22.1) ) mmgenome2_extraction <- mmextract(mmgenome2, min_length = 3000, selection = selection, inverse = FALSE )#>mmgenome2_extraction#> # A tibble: 47 x 13 #> scaffold length gc cov_C13.11.14 cov_C13.11.25 cov_C13.12.03 cov_C14.01.09 #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 180 22093 74.0 0.298 12.0 7.34 37.9 #> 2 227 190826 65.4 0.348 13.0 6.91 38.5 #> 3 253 296715 70.2 1.06 15.2 7.00 41.1 #> 4 315 218862 71.7 0.366 12.6 7.17 38.8 #> 5 343 27203 57.6 0.235 10.7 5.07 32.0 #> 6 381 6128 67.2 8.11 22.6 5.89 48.7 #> 7 386 164942 68.2 0.359 12.3 6.73 37.2 #> 8 396 7448 72.6 0.329 13.0 7.59 41.0 #> 9 423 100199 68.7 1.40 15.3 6.71 40.0 #> 10 431 446220 72.4 0.409 12.6 6.80 37.9 #> # … with 37 more rows, and 6 more variables: PC1 <dbl>, PC2 <dbl>, PC3 <dbl>, #> # geneID <chr>, taxonomy <fct>, rRNA16S <fct>mmgenome2_extraction_expanded <- mmexpand_network( mm = mmgenome2, scaffolds = mmgenome2_extraction, network = paired_ends, min_connections = 10, include_connections = "direct" )#>#>mmgenome2_extraction_expanded#> # A tibble: 70 x 13 #> scaffold length gc cov_C13.11.14 cov_C13.11.25 cov_C13.12.03 cov_C14.01.09 #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 180 22093 74.0 0.298 12.0 7.34 37.9 #> 2 181 2970 68.0 0.34 13.9 7.37 38.6 #> 3 227 190826 65.4 0.348 13.0 6.91 38.5 #> 4 253 296715 70.2 1.06 15.2 7.00 41.1 #> 5 315 218862 71.7 0.366 12.6 7.17 38.8 #> 6 343 27203 57.6 0.235 10.7 5.07 32.0 #> 7 381 6128 67.2 8.11 22.6 5.89 48.7 #> 8 386 164942 68.2 0.359 12.3 6.73 37.2 #> 9 396 7448 72.6 0.329 13.0 7.59 41.0 #> 10 423 100199 68.7 1.40 15.3 6.71 40.0 #> # … with 60 more rows, and 6 more variables: PC1 <dbl>, PC2 <dbl>, PC3 <dbl>, #> # geneID <chr>, taxonomy <fct>, rRNA16S <fct>